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In recent years, the development of intuitive human-

computer interfaces has drawn a growing interest from 

different research communities. One major aspect of 

designing such interfaces is to measure or predict the 

cognitive state and cognitive processes of the user. This 

ability would enable systems to optimize information 

presentation for the available cognitive resources, current 

goals, and cognitive context of the user and give support in 

critical or difficult situations. 

 

Cognitive models have in the past successfully been applied 

to explain and predict user behavior and build interactive 

systems that respond adaptively to user state (e.g., Peebles 

& Cox, 2006; Ritter, Anderson, Koedinger, & Corbett, 

2007). More recently, cognitive models have been used to 

predict neural activity in fMRI studies or to infer cognitive 

states in combination with fMRI data (e.g., Anderson, 

Albert & Fincham, 2005; Anderson, Betts, Ferris & 

Fincham, 2010). This approach is particularly interesting 

from an HCI perspective, as neural data may serve as 

indicators of cognitive processes that have no easily 

observable behavioral correlates (e.g., decision making or 

memory retrieval). In the present study we bring together 

these strands of research by combing cognitive models with 

neural data derived from EEG recordings to predict user 

behavior. To evaluate this approach, we used a paradigm 

based on a memory-guided search task previously employed 

by Fu and Anderson (2006). We chose this type of task as it 

resembles a basic type of human-computer interaction, has a 

structure suitable for an EEG study, and has successfully 

been modeled by applying a form of temporal difference 

learning (cf. Sutton & Barto, 1998) implemented in the 

ACT-R cognitive architecture. 

 

The focus of our analysis was (1) to explore which 

electrophysiological measures are suitable indicators for 

various aspects of cognitive user state in this task and (2) to 

investigate how the behavioral predictions of the cognitive 

model of the task could be enhanced by integrating the 

neural data.  

Method 

The task was adapted from the maze search task used by 

Fu & Anderson (2006), which is a multi-step decision and 

learning paradigm. In this task, participants have to find a 

goal node in a hierarchical tree structure. For purposes of 

this study, the tree structure was presented as a file system 

in which a particular file had to be located. Participants start 

each trial at the root node of the tree. At each node, they 

select one of two options leading to the next node until they 

reach a leaf node. When the leaf node contains the target, 

the next trial starts. When reaching a dead end the 

participant is reset to the node with the last correct decision. 

The task consists in discovering and consistently applying 

the correct route from the root node to the target. To allow 

the manipulation of associative learning requirements, each 

node is labeled with a word randomly selected from a set of 

concrete nouns unique to the node (representation set). The 

correct decision option for each node is tied to this label and 

has to be learned. The easy version of the task used a 

representation set of two concrete nouns per node, the 

difficult version a set of four. Decision options were 

abstractly labeled “alpha”, “beta”, “gamma” and “delta” in 

order to eliminate spatial or semantic cues.  

 

The task was displayed on a computer screen, showing 

the folder in the center and the two decision options to the 

left and right below the folder at each stage of the task. 

Responses were given by pressing one of four buttons. After 

instruction and practice each participant completed the task 

for two easy search trees for 60 trials and two difficult 

search trees for 120 trials. During task performance EEG 

was recorded from 32 channels using actiCAP active 

electrodes and an actiCHamp amplifier (BrainProducts, 

Germany). In a completed pilot study, we obtained data 

from 18 participants (age 19 to 26, five female).  

Data Analysis 

Detailed data analysis is currently in progress and will be 

reported in full at the conference presentation. Here, we 

present a short summary of the cognitive model, selected 

preliminary results for the behavioral data, and one potential 

electrophysiological indicator of learning performance. 
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Following Fu & Anderson (2006), we constructed a 

computational model based on temporal difference learning 

(TD) to simulate individual learning progress and predict 

the certainty of an upcoming decision. To model individual 

learning progress, the TD model is trained with the history 

of participants' decisions for each trial block in order to 

predict the next decision. We were able to reproduce the 

basic pattern of results reported in Anderson and Fu: The 

model correctly predicts faster convergence for nodes closer 

to the leaves of the tree as reward is only received there and 

propagated backwards. Additionally, we used a Softmax 

function to derive decision probabilities from the learned 

scores and calculate the entropy of the resulting distribution 

to derive decision confidence (Figure 1). This information 

can be used to identify trials traversing states for which 

learning has not converged yet, even if no actual error 

occurred. 

 

 

We expected to observe correlates of a number of different 

cognitive processes in the EEG signal. For example, we 

assumed that the power of oscillations in the theta band 

increases during memory activity (Onton, Delorme & 

Makeig, 2005; Klimesch, 1998). A qualitative comparison 

of the aggregated behavioral data and averaged theta power 

in a frontal region shows that this may indeed be the case: In 

Figure 2, the average number of errors per trial for difficult 

search trees is displayed. As expected, this value drops 

sharply during early trials, rises again between trials 40 and 

60 as interference between learned items increases, before 

finally converging towards a lower limit. The intermediate 

increase in the number of errors seems to be mirrored by a 

corresponding rise in theta power for those trials, as shown 

in Figure 3. 

 

Conclusion and Future Work 

The preliminary results suggest that the basic 

computational model is adequate and that there may be valid 

electrophysiological correlates of learning progress, which 

is a promising basis for the planned detailed analyses. 

Future work will concentrate on a formal integration of 

computational and EEG-based prediction in a Bayesian 

framework and the addition of further  electrophysiological 

markers, e.g., related to decision making or error feedback. 

Additionally, the paradigm offers several possibilities for 

extension by further varying its cognitive demands (e.g., the 

size of the search tree or the representation set) or its 

semantic framing (e.g., as a web search or spatial navigation 

task). 
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Figure 2: Error per trial block averaged over all participants 

for difficult search trees. 

Figure 1: Development of entropy of decision probabilities for 

one participant in a difficult search tree; displayed per trial and 

as running average. 

Figure 3: Spectral power in the theta band at F3 averaged over 

recordings for difficult search trees of three participants. 
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